Electrocution Hazards

Electricity Accidents

People who work directly or indirectly with electricity can be the victims of serious electrocution injury or death on construction sites. These accidents occur when:

- Construction equipment comes into contact with high power lines.
- Wires are not properly insulated.
- Wires are not properly moved or labeled during work.
- Electricity is not turned off before work begins.
- Workers do not know the location of underground power lines.
- Workers do not ask local utility companies for power line information.

Types of Electrocution Hazards

The Occupational Safety and Health Administration (OSHA) recognizes electricity as a serious workplace hazard and implemented electrical standards to protect employees exposed to dangers such as electric shock, electrocution, fire, and explosions.

Electrocution results when a person is exposed to a lethal amount of electrical energy. An electrical hazard can be defined as a serious workplace hazard that exposes workers to any of the following:

- Burns
- Electrocuton
- Shock
- Arc flash or arc blast
- Fire
- Explosions
Types of Health Hazards (cont.)

<table>
<thead>
<tr>
<th>Term</th>
<th>Hazard Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burns</td>
<td>Most common shock-related injury resulting in electrical, arc flash, or thermal contact injuries.</td>
</tr>
<tr>
<td>Electrocution</td>
<td>Means to kill with electricity and occurs when a person is exposed to a lethal amount of electrical energy.</td>
</tr>
<tr>
<td>Shock</td>
<td>A reflex response to the passage of electric current through the human body and results when electric current enters the body at one point and leaves through another.</td>
</tr>
<tr>
<td>Arc Flash or Arc Blast</td>
<td>Sudden release of electrical energy through the air that gives off thermal radiation (heat) and bright, intense light that can cause burns. Temperatures have been recorded as high as 35,000 °F.</td>
</tr>
<tr>
<td>Explosions</td>
<td>Can occur when electricity ignites an explosive mixture of materials in the air.</td>
</tr>
</tbody>
</table>

Leading Causes of Construction Industry Deaths

In 2005, the BLS concluded that:

- Electrocution was the fourth leading cause of construction deaths causing 9% of 1,243 construction worker deaths, but accounted for less than 1% of reported recordable non-fatal injuries.
- From 2003-2005, the death rate from electrocutions for the construction industry was 1.1 per 100,000 full-time workers, an average of 121 electrocutions per year.
- Electrical power installers, repairers, and earth drillers had the highest electrocution death rates.
- The construction occupations with the highest number of electrocution deaths were:
 - Electricians (29)
 - Construction laborers (19)
 - Supervisors and managers (13)
 - Electrical power installers and repairers (10)

Electrocution Dangers

The most common electrocution dangers in the construction industry are:

- Contacting overhead power lines.
- Contacting energized sources, such as live parts, damaged or bare wires, defective equipment, or tools.
- Using extension or flexible cords improperly.
Electrocution Dangers (cont)

<table>
<thead>
<tr>
<th>Danger</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overhead Power Lines</td>
<td>Overhead and buried power lines are especially dangerous to workers because they carry extremely high voltage ranging from 120 to 750,000 volts. The most reliable way to know a power line’s voltage is to ask the utility company that owns the line.</td>
</tr>
</tbody>
</table>
| Energized Sources | Electrical shock happens when an individual comes in contact with:
• both wires of an electrical circuit
• one wire of an energized circuit and the ground, or
• a metallic part that is energized by contact with an electrical conductor. |
| Improper Use of Cords | Workers create hazards when cords, cord connectors, receptacles, and cord or plug-connected equipment are not used and maintained properly. |

Contact with Overhead Power Lines

People working in the vicinity of high voltage power lines are exposed to burns, falls from elevations, and fatalities due to electrocution. Workers often encounter electrocution hazards while working on cranes, ladders, man-baskets, or other equipment under or near power lines.

Some overhead power lines have a protective covering. Although, this covering protects power lines from exposure to the elements, it does not protect workers from electrocution. If you touch a power line, covered or bare, death is possible.

Contact with Energized Sources

Electrical shock results when the body becomes part of the electrical circuit and current enters the body at one point and leaves through another. The severity and effects of an electrical shock depend on the following:

• Pathway through the body
• Amount of current
• Length of time of exposure
• Presence of water on the skin because water is a great conductor of electricity, allowing current to flow more easily in wet conditions and through wet skin.
Contact with Energized Sources (cont)

Electrical burns are among the most serious burns and require immediate medical attention. They occur when an electric current flows through tissue or bone, generating heat that causes tissue damage. Because the body cannot dissipate the heat generated by current flowing through the resistance of the tissue, burns occur.

Arc or flash burns are caused by an electric arc or explosion. An arc flash, or blast, is a short circuit through the air where the electricity flashes over from one exposed live conductor to another conductor or to ground. A nearby person can act as the conductor and be flash burned.

Like most contact burns, thermal contact burns occur when skin comes in contact with hot equipment.

Improper Use of Extension and Flexible Cords

Flexible cords can be damaged by:
- Door or window edges
- Staples
- Fastenings
- Abrasions from adjacent materials
- Aging
- Moisture

- When a cord connector is wet, electric current can leak to the equipment grounding conductor, and to anyone who picks up that connector, if they provide a path to ground. Such leakage can occur on the face or a moist portion of the connector.
- When cords are damaged, electrical conductors can become exposed increasing the danger of shocks, burns, or fire. To reduce hazards, flexible cords must connect to devices and fittings in ways that prevent tension at joints and terminal screws.

Electrocution Safety Methods

To help you StartSafe and StaySafe when working with electricity, you should always:

- Maintain a safe distance from overhead power lines.
- Use ground-fault circuit interrupters.
- Inspect extension cords and portable tools.
- Use power tools and equipment as designed.
- Follow proper lockout/tagout procedures.
Safety Practices for Working Near Power Lines

Staying as far away from power lines as possible is the best way to avoid being electrocuted. The following table shows the safe power line clearance distance for various line voltages.

<table>
<thead>
<tr>
<th>Voltage (nominal, kV, alternating current)</th>
<th>Minimum Clearance Distance (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 or less</td>
<td>10</td>
</tr>
<tr>
<td>Over 50 to 200</td>
<td>15</td>
</tr>
<tr>
<td>Over 200 to 350</td>
<td>20</td>
</tr>
<tr>
<td>Over 350 to 500</td>
<td>25</td>
</tr>
<tr>
<td>Over 500 to 750</td>
<td>35</td>
</tr>
<tr>
<td>Over 750 to 1000</td>
<td>45</td>
</tr>
<tr>
<td>Over 1000 established by the power line owner, operator, or registered engineer who is qualified to assess electrical power transmission and distribution</td>
<td></td>
</tr>
</tbody>
</table>

Using Ground Fault Circuit Interrupters

A ground fault circuit interrupter (GFCI) is designed to protect people from severe and sometimes fatal electrocution by:

- Monitoring the current-to-load for leakage to ground.
- Detecting when the leakage exceeds 5 mA ± 1 mA, which is a ground fault.
- Interrupting the flow of electric current by tripping quickly enough to prevent electrocution.

In the scenario above, the GFCI would:

- Sense the current flowing through the worker.
- Trip the circuit.
- Cut off the electricity.

Using Ground Fault Circuit Interrupters (cont)

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receptacle GFCI</td>
<td>Used to protect electrical equipment connected to GFCI outlets. Must be plugged into GFCI protected outlet.</td>
</tr>
<tr>
<td>Temporary or Portable GFCI</td>
<td>Used to protect electrical equipment connected to non-GFCI outlets. Must be plugged into a receptacle GFCI.</td>
</tr>
<tr>
<td>Circuit Breaker GFCI</td>
<td>Used to protect an entire circuit. Must be plugged into the circuit breaker on the main circuit board.</td>
</tr>
</tbody>
</table>
Inspecting Extension Cords and Portable Tools

- Even when the power system is properly grounded, electrical equipment can instantly change from safe to hazardous due to extreme conditions or rough handling. Therefore, it is important that workers follow these tool safety tips.
- Use only approved equipment.
- Use all equipment according to the manufacturer’s instructions.
- Never carry a tool by the cord.
- Never yank the cord to disconnect a tool.
- Keep cords away from heat, oil, and sharp edges.
- Disconnect when not in use and when changing accessories such as blades and bits.
- Avoid accidental starting.
- Do not hold fingers on the switch while carrying a plugged-in tool.
- Use gloves and appropriate footwear.
- Store in dry a place when not in use.
- Do not use in wet or damp environments.
- Remove damaged tools from use.
- Use double-insulated tools.

Dangers of Working With Asbestos (cont)

According to the Occupational Safety and Health Administration (OSHA), employers must ensure that no employee is exposed to an airborne concentration of asbestos in excess of:

- 0.1 fiber per cubic centimeter as a 30-minute time-weighted average (TWA) AND
- 1 fiber per cubic centimeter as averaged over a sampling period of 30 minutes

To help ensure the safety and health of workers around asbestos, employers must:

- Assess all asbestos operations for the potential to generate airborne fibers.
- Use exposure monitoring data to assess employee exposures.
- Designate a competent person to identify asbestos hazards in the workplace and correct them when found.

Dangers of Working with Silica

Crystalline silica is a basic component of soil, sand, granite, and many other minerals whose particles can be inhaled by workers chipping, cutting, drilling, or grinding objects that contain silica. There are three types of crystalline silica:

- Quartz is the most common form of crystalline silica
- Cristobalite
- Tridymite
Dangers of Working with Silica (cont)

Crystalline silica is classified as a human lung carcinogen that, when inhaled, can cause silicosis, which can be disabling, or even fatal. Respirable silica dust enters the lungs and causes the formation of scar tissue, thus reducing the lungs' ability to take in oxygen. Because the effects of silica are irreversible, it is considered a serious health hazard on many construction sites.

<table>
<thead>
<tr>
<th>Dust Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respirable</td>
<td>Dust that enters the lungs and causes lung damage</td>
</tr>
<tr>
<td>Coarse</td>
<td>Dust caught in the nose and throat before reaching the lungs</td>
</tr>
</tbody>
</table>

The legal limit for silica in the air is 100 micrograms per cubic meter. A general rule of thumb is that if you can see dust containing silica in the air, it is almost always over the permissible limit. To help ensure you StartSafe and StaySafe when working around silica dust, you should:

- Be aware that smoking increases the damage from crystalline silica.
- Know the work operations where exposure to crystalline silica may occur.
- Participate in any air monitoring or training programs offered by an employer.
- Wear a respirator approved for protection against crystalline silica-containing dust, when necessary.
- Use Type CE positive pressure abrasive blasting respirators when sandblasting.
- Change into disposable or washable work clothes at the work site, if possible.
- Shower and change into clean clothing before leaving the work site, if possible.
- Avoid eating, drinking, using tobacco products, or applying cosmetics in areas containing crystalline silica dust.
- Wash hands and face before eating, drinking, smoking, or applying cosmetics outside of the exposure area.

Following Proper Lockout/Tagout Procedures

Many accidents occur because workers fail to lockout and tagout machinery properly. Lockout and tagout (LOTO) or lock and tag is an essential safety procedure that protects workers from injury while working on or near electrical circuits and equipment because LOTO:

- Locks the device or power source and prevents the turning on of hazardous power sources while performing maintenance or servicing work.
- Requires workers to place a tag on the locked device indicating that it should not be turned on. When using a tag, other energy isolation techniques may be necessary to maintain worker safety.
- Prevents contact with operating equipment parts such as, blades, gears, shafts, etc.
- Prevents the unexpected release of hazardous gases, fluids, or solid matter in areas where workers are present.
Following Proper Lockout/Tagout Procedures (cont)

Workers must follow LOTO procedures to protect against being electrocuted. When performing LOTO on circuits and equipment, do the following:

• Identify all sources of electrical energy for the equipment or circuits in question.
• Disable backup energy sources, such as generators and batteries.
• Identify all shut-offs for each energy source.
• Identify all shut-offs and circuitry must be shut off, locked out, and tagged out because just turning a switch off is not enough.
• Shut off energy sources and lock switch gear in the OFF position. Each worker should use his or her individual lock and key and keep them on their person.
• Test equipment and circuitry to ensure they are de-energized. This must be done by a qualified, competent person.
• Deplete stored energy by bleeding, blocking, or grounding.
• Apply a lock or tag to alert other workers that an energy source or piece of equipment has been locked or tagged out.
• Make sure all workers are safe and accounted for before equipment and circuits are unlocked and turned back on. Only a qualified person can determine when it is safe to re-energize circuits.

Employers’ Responsibilities for Protecting Workers

OSHA expects employers to take every precaution to protect workers from electrocution by:

• Ensuring overhead power line safety.
• Isolating electrical parts.
• Supplying ground-fault circuit Interrupters.
• Implementing an assured equipment grounding conductor program (AEGCP)
• Ensuring the safety of power tools.
• Ensuring proper guarding.
• Providing training.
• Enforcing LOTO safety-related practices.
• Ensuring proper use of flexible cords.

#1: Ensuring Overhead Power Line Safety

The most important ways employers can minimize power line hazards are to:

• Maintain a safe distance from lines.
• Ask the power company to:
 o De-energize and ground power lines.
 o Keep a power company representative on site.
 o Install insulated sleeves, known as eels, over power lines.

Employers should also:

• Inform workers about jobs with electrical hazards and how to control these risks.
• Encourage workers to ask questions if they have any doubts about maintaining safe working conditions.
#2: Isolating Electrical Parts

Employers are expected to:
- Protect electrical parts, conductors entering boxes, cabinets, and fittings from abrasion.
- Close openings through which conductors enter.
- Close unused openings in cabinets, boxes, and fittings.
- Cover pull boxes, junction boxes, and fittings.
- Ground metal covers.
- Cover each outlet box, faceplate, or fixture canopy in energized installations.
- Install proper bushings or provide smooth, well-rounded surfaces for flexible cords to pass through.

#3: Supplying Ground-Fault Circuit Interrupters

According to OSHA's ground-fault protection rules and regulations, employers must:
- Supply approved GFCIs on all 120-volt, single-phase, 15- and 20-ampere receptacle outlets on construction sites that are not a part of a building or structure's permanent wiring.
- Supply approved GFCIs for extension cords with receptacles.
- Install GFCI circuit breakers in the main circuit board to protect an entire circuit.

#4: Implementing an Assured Equipment Grounding Conductor Program

Per OSHA's requirements, employers must establish and implement an assured equipment grounding conductor program (AEGCP) that:
- Outlines specific procedures for inspecting and testing required equipment.
- Covers all cord sets, receptacles not part of a building or structure's permanent wiring of the, and equipment used by employees that is connected by a cord and plug.
- Records the outcomes of continuity tests that ensure the equipment grounding conductor is electrically continuous.
- Electrical equipment noted in the AEGCP must be visually inspected each day by a competent person for damage or defects before use. Any damaged or defective equipment must not be used by the employee until it is repaired.

Employers must make the written program description and recorded tests available, at the jobsite, to OSHA and any affected employees, upon request. The employer is required to designate one or more competent persons to implement the program.
#5: Ensuring the Safety of Power Tools

Employers need to ensure that all power tools and equipment are safe for workers to use by:

- Grounding power supply systems, electrical circuits, and electrical equipment.
- Inspecting electrical systems frequently to ensure continuous path to ground.
- Verifying that ground prongs are present in tools or extension cords.
- Grounding exposed metal parts of equipment.
- Communicating to workers the importance of inspecting electrical equipment before using.

#6: Ensuring Proper Guarding

Effective guarding requires equipment with exposed parts operating at 50 volts or more to be:

- Placed where they are accessible only to authorized people qualified to work with or on the equipment.
- Confined to ensure workers do not accidentally come into contact with the equipment's live parts.
- Enclosed in a room, vault, balcony, gallery, or elevated platform at least eight feet above the floor.

#7: Providing Training

According to OSHA, to help workers StartSafe and StaySafe, employers must train workers on the safety-related work practices that pertain to their job assignments. Employers should instruct workers using electric equipment in safe work practices to:

- De-energize electric equipment before inspecting or repairing.
- Use cords, cables, and electric tools that are in good condition.
- Follow proper lock out tag out procedures.
- Use appropriate protective equipment.
#8: Enforcing LOTO Safety-Related Practices

Regarding lockout/tagout procedures, OSHA expects employers to:

- Lockout/tagout deactivated controls while working on energized or de-energized equipment or circuits.
- Attach tags on deactivated equipment or circuits at all points where they can be energized.
- Attach tags to identify equipment or circuits being worked on while any worker is exposed to contact with live parts.

#9: Ensuring Proper Use of Flexible Cords

The OSHA construction standard requires that flexible cords are:

- Rated for hard or extra-hard usage.
- Show the rating every foot along the length of the cord.

Extension cords must be 3-wire type so they may be grounded, and to permit grounding of any tools or equipment connected to them. Limit exposure of connectors and tools to excessive moisture by using watertight or sealable connectors.